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We modeled the normal fire environment for occurrence of large forest wildfires (>40 ha) for the Pacific
Northwest Region of the United States. Large forest wildfire occurrence data from the recent climate nor-
mal period (1971–2000) was used as the response variable and fire season precipitation, maximum tem-
perature, slope, and elevation were used as predictor variables. A projection of our model onto the 2001–
2030 climate normal period showed strong agreement between model predictions and the area of forest
burned by large wildfires from 2001 to 2015 (independent fire data). We then used downscaled climate
projections for two greenhouse gas concentration scenarios and over 30 climate models to project
changes in environmental suitability for large forest fires over the 21st century. Results indicated an
increasing proportion of forested area with fire environments more suitable for the occurrence of large
wildfires over the next century for all ecoregions but less pronounced for the Coast Range and Puget
Lowlands. The largest increases occurred on federal lands, while private and state lands showed less.
We calculated fire rotation periods for the recent historical and current climate and examined the relative
differences between them and our modeled large wildfire suitability classes. By the end of the century,
the models predicted shorter fire rotation periods, with cooler/moister forests experiencing larger mag-
nitudes of change than warmer/drier forests. Modeling products, including a set of time series maps, can
provide forest resource managers, fire protection agencies, and policy-makers empirical estimates of how
much and where climate change might affect the geographic distribution of large wildfires and effect fire
rotations.
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Compared to the last three decades of the 20th century, large
wildfires in the Pacific Northwest region of the United States have
recently been making headlines with increasing frequency. Large
forest wildfires account for most of the annual fire suppression
expenditures in the western United States and each year cause sig-
nificant social and economic impacts as well as ecological changes
(Ellison et al., 2013; Moritz et al., 2014; USDA, 2015). These wild-
fires are products of their environment and the forested environ-
ments of the western US appear to be coming more suitable for
their occurrence due to climate change (Abatzoglou and
Williams, 2016; Westerling, 2016). Climate is one of the modifying
forces of the fire environment that interacts with topography and
fuel (e.g., a layer of live and dead vegetation available for burning);
each component conceptually forming a side of the ‘‘fire environ-
ment triangle” (Countryman, 1972: p. 5). This decades-old concept
appeared a few years before the concept of the ‘‘ecoclimatic trian-
gle” (Hustich, 1978: Fig. 1) that described the interaction between
human activities, the climate, and the environment. We combined
both concepts to extrapolate and contrast what we consider as
today’s ‘‘normal” fire environment to what might be considered
normal by the end of this century as a result of forecasted changes
in climate. Here, the term ‘‘normal” implies the typical state based
on averaged conditions from a geographic area over decades of
time (Lutz et al., 2011; Trewin, 2007).

Empirical studies describing environmental gradients that
influence geographic patterns of wildfire over broad landscapes
and how climate change may affect those gradients are becoming
more commonplace (Krawchuk et al., 2009; Krawchuk and
Moritz, 2014; Liu and Wimberly, 2016; Moritz et al., 2012;
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Parisien and Moritz, 2009; Parisien et al., 2012). Such assessments
help improve our understanding of the effects of changing environ-
mental controls on the geography of fire. Mutual to all of these
modeling efforts is the use of the aforementioned three environ-
mental components. Temporally, of the three, topography is the
most stable, taking centuries to millennia to change; whereas,
burnable vegetation (fuel) is dynamic and can change from year
to year in response to disturbance and growth processes. Climate
normals change at a rate in between these two temporal frequen-
cies (e.g., decades). Given recent observed changes in climate and
projections of changes in the future, the climate component of
the fire environment is a major focus of research.

It has long been known that climate largely determines ‘‘the
nature of the wildfire problem” and the resulting fire management
policies and resources needed (Reifsnyder, 1960). Thus, a changing
climate implies a need for a change in fire management policies
and strategies (North et al., 2015). Understanding the conditions
that produce suitable environments for large forest wildfires and
how those conditions are expected to change with increasing con-
centrations of greenhouse gases in the atmosphere is critical for a
better understanding of where large wildfires are likely to occur
now and into the future (Parisien and Moritz, 2009). Reliable tem-
poral and spatial predictions of large wildfire suitability in forested
ecosystems are essential for correctly identifying and managing
threats to valued resources, prioritizing forest management, and
wildfire protection. The need for such assessments is vital in the
socially, economically, and ecologically important coniferous for-
ests of the Pacific Northwest (PNW) region of the United States
where several studies have predicted large wildfires will occur
more frequently and burn larger in the future (Flannigan et al.,
Fig. 1. Study area map showing the major forested e
2000; Moritz et al., 2012; Rogers et al., 2011; Stavros et al.,
2014). Indeed, an increasing frequency of large forest wildfire
occurrence and area burned has already being observed in this
region (Dennison et al., 2014; Littell et al., 2009). The objectives
of this study were to: (1) characterize the most recent normal fire
environment for the forests within Region 6 of the USDA Forest
Service (Oregon and Washington); (2) to project this environmen-
tal relationship into the future under varying climate change sce-
narios and; (3) examine the differences between today’s normal
fire environment and those of the possible futures.

2. Data and methods

2.1. Study area

Our study area covered 216,900 km2 of forest land in Washing-
ton and Oregon. Slightly more than half (52%) is managed by the
Federal Government. The United States Department of Agriculture
Forest Service (USFS) manages about 91,200 km2 on 16 National
Forests, the United States Department of Interior (USDI) Bureau
of Land Management (BLM) manages about 14,000 km2, the USDI
National Park Service (NPS) manages about 6700 km2, and a mix
of other federal agencies manage another 800 km2. Privately
owned forests comprise about 38% (�81,500 km2) while the
remaining 10% is comprised of State and Local Government
(�13,600 km2) and Tribal Lands (�9100 km2).

There are eight EPA Level III ecoregions (Omernik and Griffith,
2014) in the study area that contain large areas of forestland
encompassing a wide range of floristic, physiographic and climatic
variability (Fig. 1). Forests vary from the moist Sitka spruce (Picea
coregions and major forest ownership patterns.
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sitchensis) and western hemlock (Tsuga heterophylla) rain forests of
the coastal region to mixed conifer, dry ponderosa pine (Pinus pon-
derosa) and western juniper (Juniperus occidentalis) east of the Cas-
cades; and from lowland Douglas-fir (Pseudotsuga menziesii) forests
to high elevation Pacific silver fir (Abies amabilis), mountain hem-
lock (Tsuga mertensiana), and subalpine fir (Abies lasiocarpa).

The current climate to the west of the Cascade Mountains is
mostly temperate maritime grading to Mediterranean in south-
western Oregon. Warmer and drier temperate conditions occur
from west to east across the Cascade Mountains with vegetation
transitioning from coniferous forests to large areas dominated by
arid steppe/desert ecosystems. During the climate normal period
from 1971 to 2000, mean monthly forest precipitation from May
to September ranged from 12 to 201 mm (Table 1). This is the time
of year when most large forest wildfires have occurred in this
region (Barbero et al., 2014). The average monthly maximum tem-
perature during the peak months of the wildfire season (July to
August) ranged from 12 to 33 �C (Table 1).

The forests managed by the BLM had the warmest/driest fire
season climate based on the 1971–2000 climate normal data,
whereas the coolest/moistest fire season climate occurred on NPS
forests (Table 2). State, local, and private forests occur at the lowest
elevations on average, while forests managed by the NPS and USFS
occur in the highest elevations on average. Forests on private and
tribal-owned lands tended to have gentler slopes (Table 2).

2.2. Environmental variables

Our modeling focused on the intrinsic elements of the fire envi-
ronment (Countryman, 1972); vegetation (fuel) available for burn-
ing, climate, and topography. Forested areas mapped by the USFS
Forest Inventory and Analysis Program (Ruefenacht et al., 2008)
represented the ‘‘fuel” side of the fire environment triangle. While
considerable efforts have been made to map geographic patterns of
Table 1
Summary of forest topography and fire season climate by forested ecoregion. Temperature
were resampled to match the 800 m2 spatial resolution of the climate data. Ecoregions we

Forested ecoregion Elevation (m) Slope (%)

Min Max Mean Min Max

Klamath Mountains 64 2125 705 1 84
East Cascades 26 2456 1375 0 74
Blue Mountains 405 2854 1413 0 102
Northern Rockies 396 2048 1027 0 75
Puget Lowlands 0 1518 159 0 89
Cascades 19 2347 1004 0 108
Coast Range 0 1599 311 0 114
North Cascades 28 2388 1176 0 141

a Mean monthly maximum temperature for July and August.
b Mean monthly precipitation from May thru September.

Table 2
Summary of forest topography and fire season climate by major forest ownership. Temp
variables were resampled to match the 800 m2 spatial resolution of the climate data. Owne
climates.

Forest ownership Elevation (m) Slope (%)

Min Max Mean Min M

USDI Bureau of Land Management 0 2629 875 0 9
Tribal 0 2251 910 0 7
Private 0 2366 626 0 1
USDA Forest Service 0 2854 1283 0 1
State and Local 0 2222 608 0 1
USDI National Park Service 0 2294 1148 0 1

a Mean monthly maximum temperature for July and August.
b Mean monthly precipitation from May thru September.
forest fuel models, it remains difficult at best (Arroyo et al., 2008;
Keane, 2013) and their patterns are highly dynamic and constantly
changing. Predicting fine scale future patterns of fuel accurately
would include a very high amount of uncertainty and may not be
feasible. For that matter, predicting the broader patterns of forest
type dynamics under a changing climate also involves a great deal
of uncertainty (Peterson et al., 2014; Purves and Pacala, 2008).
Therefore, we assumed that the current forested areas will, on
average, provide burnable fuels and a stable forest footprint over
the course of this century.

Wildfire studies in Pacific Northwest forests have shown strong
correlations between fire occurrence and area burned with sum-
mer temperature and precipitation (Davis et al., 2011; Littell
et al., 2010; McKenzie et al., 2004). Our climate variables were
temperature and precipitation climate normals that coincided with
the most active months of the study area’s fire season, thus directly
influencing fire behavior and suppression efforts which factor into
a fire’s growth. Climate normals were based on 30-year weather
averages and used as references of conditions likely to be experi-
enced at a given location (Trewin, 2007). Precipitation (hereafter
referred to as PPT) was calculated as the 30-yr mean for the
months from May through September, and temperature (TMAX)
was calculated as the 30-yr mean of the maximum temperature
for July and August, which coincides with the peak months of the
fire season. Information sources for PPT and TMAX representing
the recent climate normal from 1971 to 2000 and the currently
used climate normal 1981–2010 (hereafter; current climate nor-
mal) came from datasets (30 arc-sec, �800 m spatial resolution)
generated by the Parameter-elevation Regressions on Independent
Slopes Model (Daly et al., 2008; PRISM, 2015). Future climate nor-
mals were derived from the NASA Earth Exchange downscaled cli-
mate projections (NEX-DCP30) dataset for the US, which used
PRISM as its observational climate data to develop the model used
in creating future climate datasets that also matched the spatial
and precipitation are seasonal norms (1971–2000), not annual. Topographic variables
re ordered (top to bottom) from warmer/drier to cooler/moister fire season climates.

Temperaturea (�C) Precipitationb (mm)

Mean Min Max Mean Min Max Mean

37 19 32 28 15 112 38
15 17 31 26 12 78 25
25 15 33 26 14 78 33
26 17 31 25 20 112 46
11 16 26 24 21 119 53
31 15 32 24 19 142 66
32 15 30 23 24 197 72
47 12 31 21 13 201 72

erature and precipitation are seasonal norms (1971–2000), not annual. Topographic
rships were ordered (top to bottom) from warmer/drier to cooler/moister fire season

Temperaturea (�C) Precipitationb (mm)

ax Mean Min Max Mean Min Max Mean

5 31 17 33 27 10 119 37
4 20 16 32 25 9 131 36
17 22 16 33 25 8 187 50
37 33 14 32 24 12 201 53
22 30 15 32 24 9 190 68
41 53 12 30 20 21 193 86
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resolution and attributes of PRISM (Nemani et al., 2011; Thrasher
et al., 2013). The datasets we used included downscaled climate
projections from 33 general circulation models (GCMs) for repre-
sentative concentration pathway (RCP) 4.5 and 31 GCMs for RCP
8.5 (Van Vuuren et al., 2011) under the Coupled Model Intercom-
parison Project (CMIP) Phase 5 (Taylor et al., 2012). RCP 4.5
assumed moderate global mitigations to reduce greenhouse gas
emissions and an increase in forested areas; where atmospheric
concentrations peaked by mid-century then began to stabilize,
but at higher than current levels (Thomson et al., 2011). RCP 8.5
assumed no mitigations and a decrease in global forested areas
resulting in increasing greenhouse gas concentrations throughout
the 21st century (Riahi et al., 2011). We did not use RCP 2.6 and
6.0, because the available NEX-DCP30 datasets for these two RCPs
had only 17 of 33 GCMs in common, whereas RCP 4.5 and 8.5 had
31. Thus, making comparisons between RCPs more relevant to dif-
ferences between the scenarios as opposed to differences due to
the suite of GCMs used. Future climate normals for each GCM
under each RCP were calculated in Google Earth Engine (Gorelick,
2013) (https://earthengine.google.org/).

Topographic variables included slope as percentage (SLP) and
elevation in meters (ELEV), resampled to match the spatial resolu-
tion of our climate variables using bilinear interpolation from
30 � 30 m resolution digital elevation models. There was a moder-
ate negative correlation between TMAX and PPT (r = �0.6); how-
ever, the variance inflation factors (VIF) for all four model
variables ranged from 1.2 to 2.2. Both of these measures were
lower than commonly used modeling thresholds (r > 0.7 and
VIF > 10) where collinearity begins to confound model perfor-
mance (Dormann et al., 2013).

There are a host of other factors that can help to explain the
occurrence of wildfire, both environmental (e.g., historical light-
ning ignition density) and anthropogenic (e.g., distance to roads)
(see Appendix G in Davis et al., 2011). Anthropogenic factors can
have a noticeable influence on fire probability models (Mann
et al., 2016), however assumptions on how these human factors
will change into the future from patterns observed today is prob-
lematic. Here, we selected a simple set of environmental variables
that not only fit the basic components of the fire environment tri-
angle, but have also already been modeled and mapped into the
future.

2.3. Large wildfire data

We used large forest wildfire occurrence data within our study
area (Fig. 2) that was coincident with the climate normal from
Fig. 2. Large (P40 ha) forest wildfire history for the study area
1971 to 2000 to train and test our baseline fire environment model.
We used large forest wildfires from 2001 to 2015 to further evalu-
ate our models with data independent of the model training pro-
cess. Following the standard established by the USDA Active Fire
Mapping Program (https://fsapps.nwcg.gov/afm/) we considered
forest wildfires at least 40 ha in size as a ‘‘large” wildfire. During
the three decades of the baseline time period a total of 512 large
wildfires burned a total area of 7400 km2, of which about
4900 km2 were forested. In half that time, 651 large wildfires
burned slightly over 3 times the amount (16,100 km2) of forest
between 2001 and 2015 (Fig. 2).

From the baseline data we generated point locations on the cen-
ter of each 800 m � 800 m (64-ha) pixel within the perimeter of all
wildfires that contained at least 5% forested area. To minimize spa-
tial autocorrelation effects in our model training we randomly
sampled from these center locations using an area-based algorithm
where the number of points per wildfire was proportional to the
square root of the ratio between the area burned to the area of
the smallest wildfire. As a result, the smallest wildfire (40 ha)
was represented by only one point, and the largest wildfire
(56,726 ha) was represented by 37 random points separated by
at least 800 m. This reduced our sample locations from 7724 to
1967.

2.4. Modeling the fire environment

We used MaxEnt version 3.3 (Phillips et al., 2006; Phillips and
Dudík, 2008) to model the fire environment of the 1971–2000 cli-
mate normal period. MaxEnt uses a machine learning method and
the principle of maximum entropy to fit mathematical functions of
environmental predictor variables to presence locations (the
response variable). It does so by maximizing the likelihood ratio
of average presence values to average values from a large random
sample of the background environment (Merow et al., 2013).
Machine learning methods are increasingly being used to empiri-
cally model fire environment relationships (De Angelis et al.,
2015; West et al., 2016). These approaches differ from process-
based methods by allowing for model calibration and evaluation
with actual fire observational data to enhance model accuracy,
identify uncertainties, and build model credibility (Alexander and
Cruz, 2013).

Our objective was to build a baseline model with an appropriate
balance between simplicity and complexity to describe the general
relationship between large wildfire occurrence and fire environ-
ment variables (Bell and Schlaepfer, 2016; Elith et al., 2011;
Merow et al., 2014). Thus, we limited our model fitting options
. The black dashed line for number of fires was smoothed.

https://earthengine.google.org/
https://fsapps.nwcg.gov/afm/
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to linear, product, or quadratic functions. This combination of func-
tions is reflected in the model output predictor response curves
that show the relationship between environmental suitability for
large wildfire occurrence (y-axis) and the range of values for each
predictor variable (x-axis). We expected that the relative environ-
mental suitability for large wildfires would generally increase with
increasing TMAX. We anticipated that suitability would increase
with ELEV due to its relationship with lightning strike densities
and ignitions (Dissing and Verbyla, 2003; Preisler et al., 2004;
van Wagtendonk and Cayan, 2008). We expected to see a positive
relationship with SLP and a negative relationship with PPT. Finally,
to prevent model projections from assuming empirical relation-
ships for future predictor variables values outside of the range used
to train the baseline model we used variable clamping, which
keeps the response function flat for values above or below the
training data (Phillips et al., 2006). Clamping, however, may result
in poorer representation of environmental relationships for cli-
matic conditions outside of the model training dataset so further
examination of response functions for this situation is warranted
(Bell and Schlaepfer, 2016).

We generated 50 bootstrapped model replicates, each time ran-
domly selecting half (n = 984) of the large wildfire data locations
and 10,000 random locations from other forested 800 m pixels
within the modeling region. The remaining half (n = 983) of the
large wildfire data were used to evaluate model performance.
The model was calibrated with stepwise incremental adjustments
(0.5) of a regularization multiplier (RM). The RM is an algorithm
coefficient based on a combination of likelihood with a complexity
penalty, making it conceptually similar to AIC (Burnham and
Anderson, 2002; Merow et al., 2014). For each RM increment, we
examined model training and test gains that indicate model over-
fitting when test gains are significantly lower than training gains.
We also examined the test area under the receiver operating char-
acteristic curve (AUC) statistic (Swets, 1988) and the continuous
Boyce index (CBI), both of which are used to evaluate model accu-
racy and fit to the testing data (Boyce et al., 2002; Fielding and Bell,
1997; Hirzel et al., 2006). We selected the model that achieved
similar training and test gains, while maximizing test AUC and
CBI statistics.

We projected the baseline model onto similar predictor data for
the current climate normal (PRISM 1981–2010) and future climate
normals using NEX-DCP30 data (1991–2020, 2001–2030 . . . 2071–
2100). We produced 33 future fire environment models for RCP 4.5
and 31 models for RCP 8.5 for each normal period. Each of these
models was based on a different GCM. We used the median and
absolute deviation maps from these various GCMs for each RCP
as the basis for depicting and evaluating the spatial changes of
the fire environment from current to the end of the century.

2.5. Mapping and validating large wildfire suitability

To facilitate model interpretation we used the predicted-to-
expected (P/E) curve from the CBI analysis to reclassify our baseline
model into three large wildfire suitability classes (Hirzel et al.,
2006: Fig. 6). The P/E curve represents the ratio of the proportion
of test locations (P) that occurred within a ‘‘moving window” width
of 0.1 along the predicted suitability axis (x-axis) to the proportion
of the model region available for fire occurrence (E) within that
same window. A good model is indicated by a monotonically
increasing P/E curve. Low suitability was classified as P/E < 1, indi-
cating that the model predicted large wildfire occurrence less than
would be expected by random chance. Moderate suitability was
classified as P/E > 1 to the step of the curve where the P/E ratio
begins to exhibit a noticeable positive increase (Hirzel et al.,
2006). High suitability was classified as the area above this step
threshold.
Using a method described in Moreira et al. (2001) we evaluated
model performance for projecting the baseline model onto future
climate normals. Specifically, using the 2001–2030 projected
map we calculated the ratio of the proportion of the forest that
was burned by large wildfires for each year from 2001 to 2015 to
the proportion of the forested area that was available for burning
in each large wildfire suitability class. The interpretation of this
burned-to-available for burning (B/A) ratio is similar to the P/E
ratio; a value of B/A < 1 indicates that the map class burned less
than would have been expected by chance and a ratio B/A > 1 indi-
cates it burned more than would be expected by chance. For each
suitability class, B/A ratios were averaged across years and confi-
dence intervals were constructed. The chi-square goodness of fit
test (Byers et al., 1984) was used to test for significant B/A ratio dif-
ferences between large wildfire suitability classes.

2.6. Estimating changes in fire rotation periods

We calculated the fire rotation period (FRP) for each large wild-
fire suitability map class for both the baseline and current climate
normal periods using the burned area-based equation (eqn. 7) from
Li (2002). These FRPs were estimated for 30-year time periods and
not expected to represent natural fire cycles owing to fire suppres-
sion, especially in the low suitability class where large fires are rare
for any given 30-yr period. Rather, they represent observed FRPs.
Given that FRPs vary widely across time (Li, 2002) we calculated
the relative difference between fire suitability classes for both time
periods. We used the averaged class differences to estimate the rel-
ative magnitude of FRP change, based on class transitions (e.g., low
to moderate) from the current climate normal to the climate nor-
mal period at the end of this century.
3. Results

3.1. Fire environment modeling

Our best model was produced using a RM setting of 2.0, with a
CBI of 0.97 ± 0.02 and a test AUC of 0.77 ± 0.01. All modeled RM
versions had similar average training and test gains (0.48 ± 0.1
and 0.49 ± 0.1, respectively; means and 95% confidence limits)
indicating that model overfitting was not an issue. Predictor vari-
able model average contributions were similar for all RM versions,
with TMAX consistently being the strongest predictor (41.0 ± 1.2%),
followed by ELEV (28.1 ± 0.5%), PPT (20.1 ± 1.4%), and SLP
(10.7 ± 0.2%). There was little variation in area predicted as suitable
(39.9 ± 0.7%) among RM settings, indicating a high level of model
robustness.

Response curves were consistent with expected relationships
for each of the predictor variables (Fig. 3). Relative environmental
suitability for large wildfires increased with increasing TMAX and
decreased with the increasing PPT. It was also positively related
with ELEV and SLP, meaning that forests at higher elevations and
on steeper slopes are more likely to experience large wildfires.
However, suitability decreased on extremely steep slopes (>90%)
perhaps in relationship to cliffs and other rocky features associated
with steep terrain that lack fuel or may act as physical barriers to
fire spread (Beaty and Taylor, 2001; Clarke, 2002).

3.2. Wildfire suitability map classes and validation

The final baseline model predicted relative occurrence of large
wildfires accurately based on the monotonic increase of the P/E
curve when plotted against the range of suitability values
(Fig. 4). The P/E curve steadily increased from 0 to 1 for large wild-
fire suitability (LWS) values from 0 to 0.37 and continued to



Fig. 4. The predicted versus expected (P/E) curve. Solid black line shows the mean
from 50 replicates, vertical gray bars show 95% confidence intervals. The horizontal
black dashed line represents the value expected if the model prediction were no
better than random chance (P/E = 1). The vertical gray dashed lines show suitability
map class thresholds.

Fig. 3. Modeled fire environment variable response functions and percentage contributions in parentheses. July-August maximum temperature (a) was the strongest
variable, followed by elevation (b), May-September precipitation (c), and slope (d). Solid lines are means and shaded areas are 95% confidence intervals from bootstrapped
replicates (n = 50). Horizontal ends indicate variable clamping.

Fig. 5. Histogram of the burned-to-available for burning (B/A) ratios for forests
burned from 2001 to 2015 (independent test data) using the 2001–2030 normal fire
environment map. Bars represent map class averages with 95%-confidence limits.
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increase as LWS increased to 0.65. Above this point the P/E curve
began to increase exponentially, reflecting better model discrimi-
nation. The final model was very robust with tight confidence
intervals up to LWS = 0.8. The variation between bootstrapped
replicates increased past this point, but confidence intervals never
fell below the P/E = 1 threshold (Fig. 4).

Based on the chi-square goodness-of-fit test (v2 = 5069;
P < 0.001) the proportion of forest that burned on average for each
year between 2001 and 2015 in each wildfire suitability class pre-
dicted by the model was significantly different than expected
under the hypothesis that proportion of forest area burned was rel-
ative to the amount available. Forests mapped as low suitability
burned on average five times less than would be expected by
chance (0.2), moderately suitable forests burned about 1.5 times
more than would be expected, and high suitability forests burned
about two to three times higher than would be expected by ran-
dom chance (Fig. 5).

3.3. Climate change predictions

NASA Earth Exchange downscaled climate models (NEX-DCP30)
predicted warmer and drier fire seasons for the forests of Oregon
and Washington by the end of this century. Climate normals for
TMAX increased on average across all forests within the study area
by 3.5 and 6.2 �C under RCP 4.5 and 8.5, respectively (Fig. 6a). Cli-
mate normals for PPT decreased by 2.8 and 5.4 mm under RCP 4.5
and 8.5, respectively (Fig. 6b). Changes in the spatial extent of
novel (outside of what has been observed within the study area
in the PRISM data) future forest climate conditions occurred
mainly for TMAX and exceeded 5% of the forested area by the



Fig. 6. Median NEX-DCP30 GCMs showed (a) varying patterns of increasing mean July-August temperature TMAX (b), decreasing mean May-September precipitation PPT,
and (c) increasing areas with novel TMAX over time across the forests of Oregon and Washington under RCP 4.5 and 8.5, by the end of this century.
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2041–2070 climate normal period (under RCP 8.5), when it begins
to rapidly increase (Fig. 6c). Novel changes in PPT were discount-
able in spatial extent (<1% of forested area).

During the baseline climate normal (1971–2000), about 59% of
the forests within the study area were classified as having a fire
environment that was of low suitability, 36% as moderately suit-
able, and 5% as highly suitable for the occurrence of large wildfires.
Projection of the model onto the current climate normal period
(1981–2010) showed a 1.6% decrease of forested area classified
as low suitability and a 1.6% increase in highly suitable forests
while the area of moderately suitable forests remained constant.
For future projections, a similar pattern emerged for both RCPs.
As low suitable forests transitioned into moderate and moderate
transitioned into high, the area of forests classified as low suitabil-
ity shrank while forests classified as high expanded and moder-
ately suited forest area remained more or less the same (Fig. 7).
Under RCP 4.5 the percentage of forests classified as low suitably
decreased from the current 57% to 38% by the end of the century
and forests classified as highly suitable increased from 7% to 27%.
Under RCP 8.5 the percentage of low suitability forests decreased
from the current 57% to 37% and highly suitable forests increased
from 7% to 31%. In general, median relative suitability increased
through time under both RCPs and across all forest ecoregions.
Uncertainty in model predictions varied geographically and gener-
ally increased with time. Median absolute deviations were highest
in the Cascades and lowest in the Puget Lowlands ecoregion
(Fig. 7).
3.4. Fire suitability trend by ecoregions

The proportion of forests predicted to transition from one large
wildfire suitability class to another by the end of the century varied
among ecoregions (Fig. 8). All ecoregions, with the exception of the
Puget Lowlands, showed increases in the proportion of forests
modeled as highly suitability for large wildfire occurrence by the
end of the century under both RCP scenarios. The largest increase
was in the Blue Mountains ecoregion, where the proportion of high
suitability forest increased from the current extent of 17% to 63–
72% (RCP 4.5 and RCP 8.5, respectively). This was followed (in
decreasing order of magnitude) by the Klamath Mountains; from
18% to 48–51%; the East Cascades, from 11% to 40–45%; the North
Cascades, from 2% to 28–33%; the Northern Rockies, from <1% to
17–26%; the Cascades, from 1% to 13–18%; and the Coast Range,
where it increased slightly from <1% to 2% under both RCPs.

The proportion of forests with low suitability fire environments
decreased in all ecoregions. The largest decrease was in the North-
ern Rockies from the current extent of 67% to 20–14% (RCP 4.5 and
RCP 8.5, respectively). This was followed (in decreasing order of
magnitude) by the North Cascades, from 63% to 35–32%; the Cas-
cades, from 71% to 47–44%; the East Cascades, from 21% to 5–4%;
the Klamath Mountains, from 30% to 14% (both RCPs); the Coast
Range, from 97% to 85% (both RCPs); the Blue Mountains, from
9% to <1% (both RCPs); and the Puget Lowlands, which decreased
slightly from 100% to 99% under both RCPs (Fig. 8).
3.5. Fire suitability trend by ownership

Forests with fire environments highly suitable for large wildfire
occurrence were projected to increase across all ownerships
(Fig. 9). The largest increase was on forests managed by the USFS
where the proportion of high suitability forest increased from the
current extent (9%) to 39–44% (RCP 4.5 and RCP 8.5, respectively)
by the end of this century. This was followed (in decreasing order
of magnitude) by BLM, from 18% to 45–49%; Tribal-owned forests,
from 2% to 22–25%; Private forests, from 4% to 17–20%; NPS, from
1% to 10–13%; and State forests; from 1% to 10–12% (Fig. 9).

Conversely, the geographic extent of low suitability forests was
projected to decrease on all ownerships with extent of decrease
larger for RCP 8.5. The largest decrease was in forests managed
by the NPS, which currently has the highest proportion of low suit-



Fig. 7. Fire environment maps derived from PRISM data showing large wildfires from the baseline normal period (1971–2000) and current normal period (1981–2010) (top
maps). Future fire environment time series maps (1991–2020, 2031–2060, and 2071–2100) derived from NEX-DCP30 data show predicted change under RCP 8.5. Median
absolute deviation maps for each of these time periods provide information on how much and where model predictions varied.
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ability forest. This extent was predicted to decline from 86% to 46–
45% (RCP 4.5 and 8.5, respectively) by the end of the century. This
was followed (in decreasing order of magnitude) by Tribal-owned
forests, from 56% to 24–23%; forests managed by the USFS; from
42% to 20–19%; State forests; from 82% to 69–67%; BLM forests,
from 38% to 21–18%; and Private forests, from 70% to 58–56%. By
the end of the century, State and Private forests were predicted
to have the highest proportions of low suitability forest.

3.6. Changes in fire rotation periods

Due to an increase in forest area burned in recent years, fire
rotation periods have already decreased between the baseline
and current climate normal periods. FRPs were longest for the
low suitability forests (5291 and 1894 years), intermediate for
the moderate suitability forests (703 and 274 years), and shortest
for high suitability forests (355 and 169 years) for the baseline
and current normal periods, respectively. The averaged differences
in FRPs for moderate suitability forests was 2-times shorter than in
high suitability forests. In low suitability forests, it was 7-times
shorter compared to moderately suitable forests, and 13-times
shorter compared to highly suitable forests. Under both RCPs,
about 19–20% of low suitability forests transitioned into moder-
ately suitable forests, 20–24% from moderate to high, and less than
1% from low to high by the end of the century. About 55–61% of the
forested area remained in their current suitability class (Fig. 10).



Fig. 8. Predicted trends in large wildfire suitability by forested ecoregion. Solid lines represent the median proportion from all GCMmaps. Shaded areas represent the quartile
range.
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On average the FRP was shortened the most in the Northern
Rockies ecoregion by a factor of 3.6 to 4.1(RCP 4.5 and 8.5, respec-
tively) followed by a twofold decrease in the Cascades ecoregions
(Table 3). Forests managed by the BLM and USFS showed a 3-fold
decrease in FRPs by the end of the 21st century, while forests man-
aged by the state and local government had the lowest decrease in
FRP (Table 3). Across the entire study area, FRP decreased by a fac-
tor of 2.4–2.7 (RCP 4.5 and 8.5 respectively).

4. Discussion

4.1. Fire environments under climate change

The modeling described here combined new methods and old
concepts to produce a time series of maps that showed how large
wildfire environments might change within the forests of Oregon
and Washington under differing climate change scenarios. We
focused on fundamental environmental controls to represent the
intrinsic nature of the fire environment. We utilized state-of-the-
art empirical modeling methods to produce a simple, intuitive
model. Three decades of large forest wildfire data from the last
century were used to train the model and large wildfire data from
the first 15 years of this century were used to independently test it.
The model predicted well where large forest wildfires are most
likely to occur. Our modeling approach was similar to a recent con-
ceptual model of the ‘‘fire regime triangle”, consisting of three
components; (1) resources to burn, (2) conditions suitable for
burning, and (3) an ignition agent (Krawchuk and Moritz, 2014).
The ‘‘core” of the fire regime triangle is defined by long-term envi-
ronmental norms or averages, but fire activity can be comple-
mented by inter-annual environmental fluctuations (Krawchuk
and Moritz, 2014). Under this concept, our normal fire environ-
ment model perhaps best represents the core of the fire regime
triangle.

Climatic variables explained 61.1% of our baseline fire environ-
ment model. Peak fire season maximum temperature (TMAX) was
the strongest variable and increased on average across the study
area by 3.5 and 6.2 �C by the end of this century (under RCP 4.5
and 8.5, respectively). Fire season precipitation (PPT) was pre-
dicted to decrease on average by 2.8 and 5.4 mm. Regional novel
future forest climate conditions occurred primarily for TMAX and
were small and negligible for PPT, consistent with other studies



Fig. 9. Predicted trends in large wildfire suitability by forest ownership. Solid lines represent the median proportion from all GCM median maps. Shaded areas represent the
quartile range.
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(Mote and Salathe, 2010). The variation in percentage of forests
predicted to transition from one large wildfire suitability class to
another by the end of the century was large across ecoregions
and ownerships. Percentages of forest predicted to transition to
higher suitability classes in the coastal ecoregions were lowest
for the Puget Lowlands with a slight increase in the moderate class
and the Coast Range, where a relatively small amount of low suit-
ability forests transitions to a high suitability. Under RCP 8.5 for-
ests classified as low suitability were predicted to disappear from
the Blue Mountains transitioning to moderate and high suitability
classes. The area of forested land classified as highly suited for
large wildfires was predicted to increase in the Klamath Mountains
and North Cascades. Large percentages of forest also transitioned
from low and moderate to higher suitability in the Northern Rock-
ies and East Cascades.

4.2. Fire rotation periods under climate change

Fire rotation periods varied widely across the study area and
through time. Given the recent increase in numbers of large forest
wildfires and extent of area burned (Fig. 2) the FRPs of the current
climate normal were less than they were for the baseline period.
However, the relative FRP differences between large wildfire suit-
ability classes remained relatively stable between time periods.
Using these relative class differences, the predicted relative magni-
tude of FRP shortening was greatest in the moister/cooler forested
ecoregions and lesser, but still shortened, in the warmer/drier
ecoregions by the end of this century. Given that FRP is inversely
related to area burned, the results in Table 3 corroborate those
by Littell et al. (2010) who modeled a two- or three-fold increase
in annual area burned in Washington forests under various climate
change scenarios. Similarly, a study by Rogers et al. (2011) showed
a 0.8–3.1 increase in annual area burned for Oregon and Washing-
ton (including non-forested areas) by the end of the 21st century.
Rogers et al. (2011) also modeled larger proportional increases in
future percent area burned per year in moister forests west of
the Cascade Crest in Oregon and Washington than in drier forests
east of it. Our modeling indicated that the FRPs in forests of the
coastal ecoregions will remain fairly stable to the end of this cen-
tury, relative to other areas. We suspect this is likely due to a
buffering of climate from the Pacific Ocean’s maritime influence.
However, there were smaller geographic areas in other ecoregions
where FRPs were estimated to remain relatively stable, likely do to
topographic influences (Fig. 10).



Fig. 10. Estimated changes in fire rotation periods by the end of this century.
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There are several existing studies that have already shown or
predicted increasing trends of wildfire as a result of climate change
(Barbero et al., 2015; Dennison et al., 2014; Moritz et al., 2012;
Rogers et al., 2011; Stavros et al., 2014; West et al., 2016;
Westerling, 2016). This study adds to that list, but was confined
specifically to the forested ecosystem to avoid confounding envi-
ronmental factors that control large wildfires differently in non-
forested ecosystems. Moreover, our results highlighted the
divergent sensitivity of differing forested ecoregions and owner-
ships to climate-induced increases in forest wildfire suitability.
This study also provided a finer scale regional focus and a time ser-
ies of map products that illustrate how the changing geography of
forest wildfire suitability might proceed through this century.

4.3. Model uncertainty and limitations

While climate is an important environmental control for large
wildfires, other factors can and do modify the fire environment
Table 3
Mean fire rotation period (FRP) relative shortening factors by geographic area.
Standard deviations in parenthesis.

Geographic area RCP 4.5 RCP 8.5

Forested ecoregion
Northern Rockies 3.6 (3.3) 4.1 (3.2)
Cascades 2.3 (3.1) 2.5 (3.2)
North Cascades 2.2 (2.9) 2.5 (3.0)
East Cascades 2.0 (2.7) 2.2 (2.7)
Blue Mountains 1.7 (2.0) 1.9 (2.0)
Klamath Mountains 1.5 (2.4) 1.6 (2.4)
Coast Range 0.8 (2.3) 0.9 (2.4)
Puget Lowlands 0.1 (0.7) 0.1 (0.7)

Forest ownership
USDI Bureau of Land Management 3.1 (1.7) 3.5 (1.8)
USDA Forest Service 2.9 (1.4) 3.3 (1.6)
Tribal 2.5 (1.2) 2.8 (1.5)
Private 2.0 (1.3) 2.2 (1.6)
USDI National Park Service 1.9 (1.1) 2.0 (1.3)
State and Local 1.6 (1.1) 1.8 (1.4)
at finer spatial and temporal scales (Krawchuk and Moritz, 2014;
Littell et al., 2016; Mann et al., 2016). For example, wildfire effects
that remove or reduce burnable forest fuels may modify large wild-
fire suitability for years following a fire. Likewise, so might fuels
reduction programs that reduce fuels or break up their continuity
prior to an ignition. These feedback mechanisms and human fac-
tors may serve to temporally dampen the environmental suitabil-
ity for large wildfires for a period of time, and should be
considered when using the maps produced here. Similarly, these
models and maps are representations of 30-year weather averages
that represent the conditions normally expected to occur and do
not represent the annual variation between the cooler/moister
and hotter/drier years—when most large wildfires in this region
occur (Littell et al., 2009). Additionally, our modeling assumed that
the forested area of today remains stable throughout this century.
However, this may not be the case if post-disturbance forest die-
backs occur in areas where the climate can no longer support forest
redevelopment (Allen et al., 2015; Clark et al., 2016).

The use of clamping in our climate response functions indicated
it could dampen relative fire suitability predictions when TMAX
exceeds 32.4 �C (Fig. 6a). Given the high relative suitability where
TMAX clamping occurs (0.76), we suspect our projected models
may slightly under predict mostly the high suitability map class
for later climate normals, especially under RCP 8.5. The spatial
extent of this novel predicted future temperature condition did
not exceed 5% of the forested areas until the 2041–2070 climate
normal period (under RCP 8.5). It mostly occurred along the lower
elevation forest/nonforest margins in southwest Oregon and east
of the Cascades. We suspect that these forest margins may be the
first areas to experience dieback. However, increased precipitation,
changes in tree physiology due to increased levels of CO2, and
other environmental factors will play a role in how this complex
process unfolds (Allen et al., 2015). How these potential environ-
mental changes will affect the overall geographic patterns of future
forests and large wildfire suitability remains an area for active
monitoring and research.
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Finally, our models only relate to fire occurrence and not fire
severity. Forests modeled as normally having low suitability for
large wildfire occurrence contain fuel conditions predisposed for
the relatively infrequent, yet extremely large and severe wildfire
events that occur during conditions of very extreme drought and
altered synoptic weather patterns as witnessed by past events such
as the Tillamook Burn of 1933 (Agee, 1993). The modeling here,
Animation 1. LWS time series animation.
and the maps produced, only addressed normal intrinsic fire envi-
ronments and not abnormal conditions and events.
5. Conclusion

In 2015 the US Northwest Climate Division and our study area
had its warmest fire season on record in over a century (http://
www.ncdc.noaa.gov/) and experienced its highest number of large
wildfires and forests burned since 1971 (Fig. 2). Our modeling indi-
cated that if the climate continues to change as predicted, it will
likely result in an increase of Pacific Northwest forests with fire
season environments more suitable for the occurrence of large for-
est wildfires. As low suitability forests shrink in area and high suit-
ability forests expand, there will likely be a continued shortening
of fire rotation periods in the study area and large forest wildfires
will become more commonplace (or normal) in the future. The
increase in forest vulnerability to large forest wildfires and short-
ening of fire rotations was more pronounced under the RCP 8.5
scenario.

Based on a recent study, our study area incurs the highest per
fire suppression costs in the United States (Gebert et al., 2007).
Most of these costs are spent on the large wildfires. Thus, as the
frequency of large wildfires increases, the annual cost of suppres-
sion would also be expected to increase. However, shifts in fire
suppression strategies might result in substantially lower annual
suppression costs that could help offset those potential increases
(Houtman et al., 2013).

Aside from wildfire suppression considerations, the time series
maps produced herein (LWS Time Series) offer natural resource
management agencies, fire protection districts, and policy-
makers empirical and validated estimates and visualizations of
how climate change might affect current geographic patterns of
large wildfire within the forests of Oregon and Washington for
the 21st century. These maps are easily interpreted and may prove
useful for planning of short and long-term forest fire and fuels
management (Millar et al., 2007; Thompson et al., 2013), informing
urban planning and development in forest interfaces (Fernandes,
2013; Syphard et al., 2013), forest reserve network designs (Berry
et al., 2015; Mackey et al., 2012), and forest carbon management
(Fonseca et al., 2016).
Fire was and remains a natural process in these forests (Agee,
1993), and these fire environment maps may contribute to our
understanding of how (geographically) it normally fits into the
ecosystem now, and into the near future. The leading edges of
change, where one forest suitability class was predicted to transi-
tion into the next higher class, will likely be the areas where the
effects of climate change on large wildfire occurrence may be
observed first (Whitman et al., 2015). Increasing environmental
suitability for large wildfire occurrence had differing effects on fire
rotation periods, with moister/cooler forests experiencing larger
FRP decreases than warmer/drier forests. Thus; the magnitude of
change, in terms of forest area burned and the social, ecological,
and economic ramifications that go with that, will likely be higher
in low suitability forests that transition into moderate or high suit-
ability. Low wildfire suitability areas that remained temporally
constant in our modeling might serve as focal areas for fire refugia
and reserves designed to maintain or restore older, denser, closed-
canopy forests. Forest that are currently classified as moderate
suitability or are predicted to transition into it may be places to
focus active management to improve forest resilience to future
wildfires. Where forests have or are predicted to transition into
higher wildfire suitability classes and, due to their juxtaposition,
also pose threats to infrastructure, valued forest resources, or areas
of conservation concern and where fire has not been as common
may need management attention to ameliorate fire risks.
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